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A rational asymptotic theory describing the perturbed flow in a turbulent boundary 
layer encountering a small two-dimensional hump is presented. The theory is valid 
in the limit of very high Reynolds number in the case of an aerodynamically smooth 
surface, or in the limit of small drag coefficient in the case of a rough surface. The 
method of matched asymptotic expansions is used to obtain a multiple-structured 
flow, along the general lines of earlier laminar studies. The leading-order velocity per- 
turbations are shown to be precisely the inviscid, irrotational, potential flow solutions 
over most of the domain. The Reynolds stresses are found to vary across a thin layer 
adjacent to the surface, and display a singular behaviour near the surface which needs 
to  be resolved by an even thinner wall layer. The Reynolds stress perturbations are 
calculated by means of a second-order closure model, which is shown to be the minimum 
level of sophistication capable of describing these variations. The perturbation force on 
the hump is also calculated, and its order of magnitude is shown to depend on the level 
of turbulence closure; a cruder turbulence model gives rise to  spuriously large forces. 

1. Introduction 
An understanding of boundary-layer flow over surface-mounted obstacles has many 

applications in aerodynamics and meterology. A number of recent studies have been 
directed a t  the problem, and much progress has been made for the laminar-flow case. 
However, the dynamics of the turbulent problem are not so well understood, although 
most boundary layers of practical interest are in fact turbulent. The aim of the present 
work is the development of a rational asymptotic theory of incompressible turbulent 
flow over a shallow hump, which will hopefully elucidate the dynamics involved. 

The laminar problem for asymptotically large Reynolds number was first investi- 
gated by Hunt (1971), and later by Smith (1973), Smith, Sykes & Brighton (1977) and 
Sykes (1978) using ' triple-deck ' theory. This is a three-layer structure using matched 
asymptotic expansions, reviewed by Stewartson (1974), and is more general than the 
earlier two-layer, locally-valid structure of Hunt (1 97 1). The predictions of the triple- 
deck theory have been confirmed a t  moderate Reynolds number by means of com- 
parisons with numerical integrations of the Navier-Stokes equation by Mason & 
Sykes ( 1 9 7 9 ~ ) .  

Townsend (1972) presents a linearized analysis of turbulent flow over a wavy surface 
using a turbulence closure of the type proposed by Bradshaw, Ferriss & Atwell (1 967). 
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This is not an asymptotic theory in a strict sense, but simplifies the equations by the 
neglect of various small terms. The main concern is with travelling surface waves, but 
some results are presented for the case of a stationary wave. Knight (1977) gives some 
of the leading-order terms in an asymptotic solution to the travelling-wave problem, 
and there is some agreement between his work and the theory presented here; un- 
fortunately his paper does not contain sufficient detail to make useful comparisons. 
Several numerical solutions of the equations for turbulent boundary-layer flow over 
topography under simple closure assumptions have been obtained (see, for example, 
Taylor & Gent 1975; Deaves 1975; Taylor 1977). Although these studies reveal the 
main features of the flow, an asymptotic study can still contribute significantly to our 
understanding of the dynamics. Counihan, Hunt & Jackson (1974) give a theory of 
the far-field turbulent wake behind a small bluff obstacle; the flow structure is com- 
posed of layers of different asymptotic scales, but the perturbations are not expanded 
as a rational series in a small parameter. This makes the solutions rather specific to 
the problem under consideration, and the details of the dynamics are obscured by the 
non-rigorous expansion procedure. Furthermore, the authors were not able to obtain 
a smooth match with the wall layer on the lower boundary. 

A linear analysis of the flow over a gentle hump is given by Jackson & Hunt (1975). 
This analysis considers two layers; an outer inviscid layer; and an inner region where 
the turbulent Reynolds stresses are parameterized by means of a mixing length 
closure. There are some problems with matching the solutions again in this theory, 
but these will be discussed further below. One aspect of the problem of flow over a 
hump which Jackson & Hunt do not address is the question of the change in total 
force on the solid boundary due to the presence of the obstacle. In  view of the laminar 
boundary-layer force results of Sykes (1978) and Mason & Sykes (1979a),  which show 
that the reduction in surface stress in the wake can largely balance the pressure force 
on a small obstacle, it is not obvious what magnitude the total force perturbation will 
have in the turbulent case. The perturbation force requires higher-order terms in the 
expansions to be calculated, and the difficulty with the calculation of such terms in 
the theory of Jackson & Hunt (1975) was one of the motivations for the development 
of a rational asymptotic theory. 

Recent work on turbulent boundary layer shock wave interactions by Adamson & 
Feo (1975) and Melnik & Grossman (1974) has shown that asymptotic flow structures 
of the same general form as the laminar triple-deck, but very different in detail and 
dynamics, can be constructed for turbulent flow. The theory presented below is 
essentially an extension of the turbulent trailing-edge flow developed by Melnik & 
Chow 1975 to the case of a gentle hump lying within a boundary layer. 

The theory has a three-layer structure in the vertical, although the innermost layer 
is extremely thin, and plays little direct part in the dynamics other than providing the 
match with the lower boundary condition, The analysis is presented using a horizontal 
length scale of the same order as the boundary layer depth, as in Melnik & Chow (1975); 
however it will be shown that the same structure applies over a wide range of length 
scales. It is shown that the mixing length hypothesis, which assumes local equilibrium 
for the turbulence, is inadequate for the intermediate layer, and a second-order closure 
turbulence model of the type described by Hanjalic & Launder (1972) is employed. 
This provides information on turbulence moments in addition to mean velocity fields. 
The rational expansion procedure also allows the calculation of higher order terms, and 
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- O(6) - 
FIGURE 1. Schematic illustration of flow geometry. 

the total force is derived and shown to be non-zero. Consideration of the effects of other 
closure assumptions shows that the perturbation force on the surface has different 
orders of magnitude for different levels of closure. 

The turbulent flow to be described is very much less interactive than the laminar 
triple-deck, mainly due to the small shear in the turbulent boundary layer. To leading 
order, the velocity perturbations are simply given by linearized potential flow, and 
the most interesting new results are the Reynolds-stress perturbations. These show 
a very rapid adjustment from the equilibrium wall layer values to the outer part of 
the stress field which is strongly influenced by its upstream history. 

The perturbations are all linearized, and the theory is unable to deal with strong 
perturbations; unlike the triple-deck which is a nonlinear theory capable of describing 
separation. I n  fact, this work suggests that slopes of order unity are necessary to 
provoke separation; this conclusion is supported by the work of Adamson & Feo 
(1975) and Melnik & Grossman (1974). 

2. Flow structure and equations of motion 
Consider a turbulent boundary layer of thickness 6 developed over a rigid lower 

boundary, with external flow speed U,, as depicted in figure 1 .  The boundary layer is 
characterized by the small parameter E = u*/Uo, where ui  = ro is the stress on the 
flat boundary in the absence of topography. We shall consider variations in surface 
elevation of order e*6 on a horizontal length scale of order 6. 

The application of asymptotic methods to the problem of an incompressible turbu- 
lent boundary layer on a smooth wall, for example, Yajnik (1970), Mellor (1972), has 
led to a systematic two-layer description of the flow. This consists of an outer defect 
layer on the scale of the boundary layer where the velocity magnitude only differs 
from the free-stream speed by an amount of Ole),  and has a logarit,hmic variation as 
the boundary is approached. This matches with the logarithmic wall layer defined in 
terms of the variable y+ = jju*/v, where is the distance from the wall and v the 
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kinematic viscosity. Thus the wall layer has a thickness of O ( C - ~ R - ~ )  where R = TGS/v  
is the Reynolds number based on the boundary layer thickness. Hence, the upstream 
velocity profiles required for the present work are taken to be 

in the outer defect layer, where y = Tj/s and 

Here if, is the Coles wake parameter, K is von KBrm&n’s constant, and W(y) is the 
wake function (see, for example, Coles 1956; Hinze 1959). Note that although the 
mean velocity is constant to O(s)  on the scale 6 the Reynolds stresses vary on this 
length scale so that the definition of the boundary-layer depth is meaningful. 

The wall-layer profile is assumed to satisfy 

N s (;In y + + ~ )  as y+ -+ oo. 
UO 

(2.3) 

In  fact, we shall only require that the wall layer be transcendentally thin compared 
to the boundary-layer scale, and make use of the asymptotically logarithmic variation 
of velocity. Thus the aerodynamically rough wall can also be included in the analysis 
if we consider the wall layer to have thickness yo, where yo is the roughness length 
which is defined from the near-wall form of the velocity profile, i.e. 

Therefore, defining y+ = g/yo, the rough wall has the same behaviour as the smooth 
wall, since the constant B in (2.3) can be absorbed into the definition of y+. 

Following Melnik & Chow (1 975), we shall consider a dimensionless perturbation of 
O ( d ) ,  which will be produced by a hump of height O($S). We shall show that in the 
main part of the boundary layer, the Reynolds stresses are subjected to a rapid dis- 
tortion, whilst the stresses in the wall layer are always in equilibrium with the surface. 
An intermediate layer is required to provide a smooth transition between the two 
Reynolds-stress values. This region turns out to have a thickness O(sB), i.e. smaller 
than the height of the obstacle, and is thus a thin layer attached to the curved surface. 
This structure is illustrated schematically in figure 1. 

As mentioned previously, it will be shown that the Reynolds stresses in the outer 
layer are rapidly distorted. This implies that a simple mixing length or so-called ‘first- 
order’ turbulence closure assumption is inadequate for a description of the entire flow. 
A more sophisticated closure scheme is necessary, but we postpone discussion of our 
choice of closure until the next section. We now present the expansions and the equa- 
tions for the velocity field. 
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Outer layer 
The undisturbed velocity profile is given by (2.1) and (2.2) where y = y/Sis the dimen- 
sionless normal co-ordinate in the outer layer. Scaling the streamwise co-ordinate, x 
by 6, we expand the velocity and pressure as follows 

where p is the density of fluid, and y = s*f ( x )  is the profile of the lower surface, i.e. 
the upstream profile uBL is displaced over the obstacle. 

The basic Reynolds stresses are O(sZUi), and since the perturbation stresses are 
O(s&U$), the outer flow is inviscid up to O(&. Thus, the two leading-order terms ape 
simply the first two terms of linearized potential flow, i.e. 

and 

ap2 ax I au, aul au -+u -++,-L -- 
ax ax ay 

Hence 

and 
vzp, = 0 

vzp; = 0 

where p i  = pz+ +(u!+v!), and we have used the fact that auJay = av,/ax, i.e. the 
flow is irrotational. Higher-order terms will involve the rotational boundary-layer 
component, uBL(y--s4f ( x ) ) .  

The lower boundary conditions on the outer flow equations must come from 
matching with the inner layers. 

Watt layer 

We consider next the wall layer of thickness yo, or e-lR-lS. We define the wall-layer 
variable y+ = (ij-e&Sf(x))/y,.  Since we have the relation slnS/y, = O(1) (or sln 
sR = O(1)) from the requirement that the asymptotic wall-layer profile (2.4) (or 
(2.3)) must match with the outer-layer profile (2.1), the wall layer is transcendent- 
ally thin. Thus the total stress gradient, i.e. Reynolds stress plus viscous stress in the 
smooth wall case, is zero to all orders across the wall layer. 
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Using the asymptotic form (2.4), the wall-layer condition is 

(2.10) 

where 7f is the dimensionless stress on the boundary, and ut is the velocity component 
tangential to the surface. 

We expand 7', as follows: 

7f = 1 +sf71+(2)+~72t(2)+s~Ine7,+,(2)+~3773+(~)+ ..., (2.11) 

where the logarithmic terms are generated by the match with the Reynolds-stress 
sublayer. 

Reynolds-stress sublayer 

The normal co-ordinate in this layer is taken to be Y = (ij - ef8f(x)) /sS,  and we expand 

I (2.12) 

U s lns  - = 1 + sf Ul(x, Y )  + - + s(UBL ( Y )  + U,) + €3 In s U,, + €4 U3 + . . ., 
Uo K 

If we define 

then 

and we expand 

df v = sfu-+v* 
a x  

(2.13) 

(2.14) 

(2.15) 
V* - = s Q ~ , * ( x ,  Y)+s,V,*+sQIneV7,*,+efV~+ ... . 
VO 

- 
Finally, the Reynolds stresses 7ij = - uiu; are expanded as follows 

2 = @Aij  + s#T$(x, Y )  + azTl5) + . . . , (2.16) 

where Ai  is the dimensionless equilibrium Reynolds-stress tensor near the surface 
in the undisturbed flow; A i j  is a constant tensor because the Reynolds stress varies 
on the scale S in the upstream boundary layer. We also know that A, ,  = 1, and the 
only other non-zero components are the diagonal terms, which are all negative. 

Substituting theexpansions (2.12), (2.15), (2.16) into theReynolds-averagedNavier- 
Stokes equations, and remembering the non-orthogonal co-ordinate sysbem, we obtain 
a sequence of perturbation equations. The O(&) terms give 

u: 

au1- -- -3 
ax ax' aY 

where a/ax indicates a/ax] ,, . 
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Thus 

Wl V1*(X, Y )  = - Y -  ax 

since the velocity and pressure must match with the outer flow. 
A t  O(e) ,  we have 

where we have used the O(&) result that 

The prime denotes differentiation with respect to x. 
Thus 

At 0(6 In 8 )  : 

From the match with the outer flow 
1 

P3, = 0, u,, = ; U1(Z). 

The O(&) terms give 

653 

(2.17) 

(2.18) 

(2.19) 

The Reynolds-stress perturbation, T$:), has made its appearance a t  this order, and 
therefore some closure scheme is required before equations (2.20) can be solved. We 
postpone discussion of the turbulence closure until the next section, and consider 
now the lower-order solutions which are independent of any closure assumptions. 

Leading-order solutions 

The outer flow solution to lowest order is potential flow, equations (2.6) and (2.8), 
and the match with the inner layer (2.13), (2.15) gives the lower boundary condition 

v1(5, 0) = d f /ax. (2.21) 



654 R. I .  Sykes 

Thus 

and 

I v2p1 = 0 

Similarly, a t  O(s), 

I Q2pi = 0, 

and 

(2.22) 

(2.23) 

where p;  is defined immediately after (2.9). 
Hence the two lowest-order terms are simply the linearized inviscid potential flow 

terms for flow over the perturbed lower boundary. The corresponding terms in the 
inner Reynolds-stress sublayer are obtained by matching with these, and are just 
the potential flow solution values a t  the lower boundary y = e*f(x), as can be seen 
from (2.17) and (2.18). 

Having obtained the leading-order terms, it is possible to deduce the form of the 
Reynolds stresses near the surface. First, in the wall layer, the stresses are independent 
of distance from the surface, and the velocity is given by the logarithmic profile (2.10). 
From (2.11). 

(2.24) 

The matching of the boundary layer profiles requires ( B / K )  In (6/yo) = 1 - WTe, 
which can be regarded as fixing 8. Then rewriting (2.10) in terms of the Reynolds-stress 
sublayer variable Y ,  

Before we can match with the Reynolds-stress sublayer, we have to account for 
the fact that the velocity is parallel to the surface in the wall layer. Thus the velocity 
in (2.25) must be multiplied by cos8, where tan8 =f'. The final match with the 
Reynolds-stress sublayer is obtained as 

(2.26) U 

Thus 
71' = 2U1{x), 7: = 2U'(Z)+ U;+f'2* (2.27) 

These surface stress solutions will be used to provide a lower boundary condition 
for the Reynolds stresses in the Reynolds-stress sublayer in the next section. Before 
proceeding, there is a further feature of the Reynolds stress behaviour near the surface 
which can be deduced from (2.20). From (2.25), we see that there is a logarithmic 
term in the velocity at  O(e*), i.e. 

7J3 - 3 l n  Y + O ( I )  as Y -+ 0. 
K 



Boundary-layer flow over a small h.ump 655 

Thus, remembering that V: = - YdUJdx, and using the definition of URL( Y ) ,  the 
balance of terms in (2.20) as Y -+ 0 must include the stress-gradient term, in fact, 

(2.28) 

Hence the first-order stress gradient has a logarithmic singularity a t  the surface, 
whilst the Reynolds stresses themselves vary like Yln Y. This does not prevent a 
match with the zero-gradient condition in the wall layer, since the depth of the wall 
layer is transcendentally small. This singular behaviour of the Reynolds stress is 
independent of any closure assumption, and is obtained by Adamson & Feo (1975) 
using a mixing length closure. Counihan et al. (1974) also find a singular behaviour 
in the stresses near the surface, but they do not produce an asymptotic match with 
the wall layer. The rapid stress variation appears to be produced by the horizontal 
variations of velocity, and could well be a general feature of perturbed turbulent 
boundary layers. 

3. Turbulence closure equations 

are obtainable from the Navier-Stokes equations as 
The Reynolds-averaged equations for the components of the Reynolds-stress tensor 

' k  &- uiui = Pii + Dii + Sii, 

where ui is the mean velocity, is the Reynolds stress and 

Lower-case latters denote a fluctuating quantity. The tensor Pi* denotes the pro- 
duction terms, Dii the dissipation and Sij the third-order correlations. 

Although (3.1) is not useful as a predictive equation, since Dij  and Sii are un- 
specified, some idea of the orders of magnitude of the various terms can be inferred. 
Using the expansion (2.16) for the Reynolds stress, the mean-flow transport term on 
the left-hand side of (3.1) is O(dUg6-1) in both the outer flow and the Reynolds-stress 
sublayer. The perturbation production terms in both layers are also O(~gUg6-') ,  as 
can be seen by substituting the leading orders for the velocity gradients in the definition 
of Pii. The undisturbed third-order correlation uiuiuk is O(c3U$), therefore the per- 
turbation will be O(egU:). This term represents the turbulent transport of the Reynolds 
stresses, and therefore in the outer layer the turbulent diffusion is O(G-UgS-l) and in 
the Reynolds-stress sublayer it is O(ePU2 &I). We have considered only the three basic 
terms in equation (3.1) in order to assess the important mechanisms; the remaining 
terms do not contribute different orders of magnitude to the analysis. From this crude 
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analysis, it  will be seen that diffusion is negligible in the outer layer, but is the same 
order as the other terms in the Reynolds-stress sublayer. This confirms the role of the 
Reynolds-stress sublayer as a blending layer between the wall layer, where the stresses 
are in local equilibrium, and the outer flow, where the stresses are rapidly distorted. 
It also prohibits any simple turbulence closure scheme, since the solutions must en- 
compass both the mixing-length result near the surface and the rapid-distortion 
result at the outer edge. This conclusion is also reached by Britter, Hunt & Richards 
(1980), where the ‘rapid-distortion’ theory of Batchelor & Proudman (1954) is used 
to calculate the turbulence changes in the outer flow. 

The closure scheme which we shall adopt is the so-called ‘second-order’ closure 
proposed by Donaldson (1971), and developed by Hanjalic & Launder (1972), and 
Launder, Reece & Rodi (1975). I n  order not to complicate unduly the equations, we 
shall not use the ‘wall terms’ of Launder et al. (1975), but we shall use the simplified 
model of the rapid pressure terms which they suggest. We also use the simplified model 
of the turbulent diffusion terms. Irwin & Smith (1975) have shown that this type of 
model accounts for the effects of streamline curvature on the Reynolds stresses, and 
we therefore have some confidence that the predictions for the problem iinder con- 
sideration will be useful. The modelled terms we shall use are 

- 
where q = &uj is the turbulence energy, P = 4qi and aij is the Kronecker delta; 
Dij = - $DcYij is the dissipation which is assumed to be isotropic. cl, ci and y are empi- 
rical constants with the values recommended by Launder et al. (1975), namely 1.5, 
0.25, 0.6 respectively. The first term in (3.2) is the turbulent diffusion, the second is 
the return-to-isotropy term due to Rotta (1951), and the third is the ‘rapid’ part of 
the pressure correlation. We still need to specify D in order to close the equations, 
and this is achieved by means of another transport equation as in Hanjalic & Launder 
(1972), i.e. 

where cE1 = 1-45, c, = 0 . 1 3 , ~ ~ ~  = 2. 
This completes the closure of the Reynolds-stress equation, and we can now sub- 

stitute the perturbation expansions (2.16), (2.12), and (2.15) into (3.1), (3.2), (3.3) to 
obtain the solution in the Reynolds-stress sublayer. We also need an expansion for D 
which we now make: 

The first-order equations (with Cartesian x derivatives) are 
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In the above equations 

and p = S(41 +P22). 

The upper boundary conditions on equations (3.5)-(3.9) are obtained by letting 
Y + 00. This leaves only the production terms and the ‘rapid ’ pressure terms on the 
right-hand side, and the equations are easily solved, giving 

(3.10) I - -{2(1-r)A,l+~~(A,l-A22)}Ul-(2-~r)f’7 

Ti;) - {W - Y) A22 - #r(A,, - A22)) U1- (2 - iIrV’7 
Ti? - - %r(A,,- - 4 2 2 )  El - Qrf ’7 

Ti;) -2(1 - y )  (A,,+A,,)f’, 
D, N 0 

as Y + m .  
The solutions (3.10) match with the outer-layer solutions, where the only forcing 

terms in the equations are the production and ‘rapid ’ pressure terms throughout the 
layer. 
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We also require a lower boundary condition, which is obtained from the wall layer. 
At the outer edge of the wall layer, the stresses and dissipation satisfy the usual 
wall-layer equilibrium. Thus, with co-ordinates aligned with the local surface, the 
Reynolds-stress tensor is r& A i j .  

In  order to match with the Reynolds-stress sublayer solution, this tensor must be 
rotated into the global co-ordinate axes which are aligned with the flat surface. After 
substituting the expansion for r+, and rotating, we find 

(3.11) 1 
T# N 2Al1U1-2f', 
Ti;) N 2A2,U1+2f', 
T&) - 2A3,U,, 

Ti;) - 2U,+(A, , -A, , ) f ' ,  
D, N 3ul/KY 

as Y+O. 
The expression for D, arises from the wall-layer dissipation, which equals (T&)+/Ky+ 

as y+ -+ m. 
We now have a complete set of equations and boundary conditions for the deter- 

mination of the first-order Reynolds-stress perturbations. We do not need to solve 
for U3 since we only require alJ3/aY in equations (3.5)-(3.9). Differentiating (2.20) 
with respect to Y, 

(3.12) 

The full solution for U3 requires the outer solution in order to determine P3, and this 
is complicated since the boundary-layer profile, u,,(y) is involved. However, u3 is 
a third-order perturbation and is not a significant contribution to any speed-up 
effects; our main interest is in the prediction of the Reynolds stresses, so we use (3.12) 
to eliminate u3 from equations (3.5)-(3.9). 

Although a Fourier transform in the x direction can be used to remove the x deri- 
vatives, equations (33-1 3.9) are too complicated to facilitate an analytic solution 
despite their linearity. Therefore the equations were solved numerically using a 
variable-step Kutta-Merson integration routine. Six independent solutions satisfying 
the lower boundary condition were integrated upward to some large value of y ,  and 
then the linearity was exploited in order to calculate a linear combination which 
satisfied the upper boundary condition. This procedure could be followed for a number 
of Fourier modes to calculate the solution for a particular shape of hill, but in the next 
section we shall present the single Fourier solution only. The lower boundary condition 
cannot be applied a t  Y = 0 since there is a singularity on the surface, SO it  is applied 
a t  some small value Y = Yo. The value of Yo wag varied until it  was sufficiently Snlall 
for the results to be insensitive. The upper boundary was also varied in a similar 
fashion. 

4. Results for sinusoidal topography 

surface 
We shall present the Reynolds-stress perturbation results for flow over the lower 

y = €4 cos x. (4.1) 
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U X 2n 

Y 

10 

0.1 

0 X 2n 

FIGURE 2 (a, b ) .  For legend see next page. 

I n  fact, it can be easily shown that if the wavelength is L, rather than 277, then the 
solutions are identical provided the amplitudes of the ‘cos x solutions’ are multiplied 
by 27r/L, and the height scale is multiplied by LI27r. That is, a shorter wavelength 
produces a larger amplitude with a smaller vertical scale. I n  view of this scale- 
independence of the solution, and the lack of accurate experimental data for com- 
parison, it wasfelt adequate to restrict the numerical solutions to the simple topography 
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Y 

10 

0.1 

2n 0 
X 

FIQURE 2. Normal Reynolds-stress perturbations in the Reynolds-stress sublayer for sinusoidal 
topography. Dashed contours denote a negative perturbation. (a) A(uZ)/&J: = - T;), contour 
interval 1.0. ( b )  A$)/&U~ = -T&), contour interval 0.43. ( c )  A(2O2)/&U; = -TYi, contour 
interval 0.38. 

- 

given by (4.1). This is particularly suitable for the Fourier transform method of solu- 
tion which was described in the previous section. 

In the solutions for the Reynolds stress variations presented below, the boundary 
conditions were applied at Y = 0.01 and Y = 100. These values were determined by 
trial and error to be sufficient for the application of the asymptotic conditions at  
these finite values not to affect the solution. We only present the Reynolds stress 
perturbations below, since the leading-order velocity and pressure perturbations are 
simply the well-known potential flow solutions. 

Figure 2 illustrates the variations in the three components of the turbulence energy 
in the Reynolds-stress sublayer. It should be noted that this layer is thinner than t'he 
height of the surface variations, and lies along the curved surface. The trough of the 
wave lies fn the centre of the domain. The equilibrium dimensionless surface-layer 
values of the turbulence energy components are derived from the second-order closure 
model as (u2, e2, 02) = e2U9(2.83, 1.35, 1.35) = e2U@lll, A22, ,&). All three perturba- 
tion components show the anticipated singular variation near the surface; note the 
logarithmic vertical scale. The surface values are not identically in phase with the 
topography owing to the rotation of the Reynolds-stress tensor into the undisturbed 
Cartesian co-ordinate system. However, there is a general tendency for all three 
components to maximize in the neighbourhood of the peak and minimize in the 
trough, as would be expected from equilibrium layer arguments. The rapid-distortion 
variations are given by the asymptotic behaviour at large Y ,  and it will be seen that 
the streamwise component is reduced over the peak, whilst the normal component is 
increased ; these changes have a similar magnitude to the theoretical rapid-distortion 

- _ _  
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Y 

10 - 

1 -  

0.1 - 

2n X 0 

FIGURE 3. Reynolds-stress perturbation, A ( E ) / d U ;  = -T:i'. 
Contour interval 0.51. 

results of Britter et al. (1980). Between these two limits there is a dramatic variation 
of the turbulence energy components. In  general, there is a local maximum in the 
perturbation amplitude near Y = 1,  and this maximum is roughly 180" out of phase 
with the surface variation. The amplitude of this elevated maximum is slightly larger 
than the surface-layer amplitude. 

The perturbation stress component A(&)/&U: = -Ti\) is plotted in figure 3, and 
shows the same general features as the normal components. As in figure 2, the minimum 
on the surface is slightly downstream of the peak of the topography owing to the 
rotation of the co-ordinates. The elevated maximum in the amplitude is also larger 
than the amplitude of the surface variation. 

The structure displayed in these results is qualitatively similar to the numerical 
results of Taylor, Gent & Keen (1976) for turbulent flow over a wavy surface. They 
only consider the surface-layer flow since the horizontal wavelength is very short, 
therefore the quantitative values are not strictly comparable. In  fact their 
numerical values are quite different; for example their elevated extrema have 
nearly the same amplitude as the surface extreme compared to a factor of two 
difference in figure 3. However, we shall show below in 4 7 that stresses obtained under 
different closure assumptions will be completely different, therefore detailed com- 
parisons are of limited value. The results of Taylor et al. are also nonlinear, but they 
confirm the very rapid variations of the Reynolds stress near the surface; this behaviour 
was deduced in the previous section independently of any closure assumption. It 
will also be shown below in $6 that the present theory is easily modified to accomo- 
date shorter length scales of topography. 

The magnitude of the perturbations in figures 2 and 3 is perhaps surprisingly large. 
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The topography (4.1) introduces a first-order dimensionless velocity perturbation of 
magnitude unity a t  the surface, but the relative changes in the Reynolds-stress 
components a t  the elevated maximum is roughly three to four times larger than the 
relative change in velocity. These changes in Reynolds stress seem the most promising 
possibility for comparison between experiment and theory; however it should be 
remembered that these variations are within a thin layer adjacent to the surface, 
and are very difficult to measure in wind-tunnel experiments with artificially roughened 
surfaces. 

Townsend (1972) also calculates the Reynolds stresses using a closure a t  the same 
level as the current work. His prediction of the surface-stress variation is quite unlike 
our results (2.27) which is in phase with the wave. He obtains a similar magnitude but 
the phase difference is O(1) as can be seen from Townsend’s table 1. Since (2.27) is a 
very simple asymptotic result, the disagreement seems fundamental. A possible 
source of the discrepancy is Townsend’s treatment of the lower boundary condition 
as expressed in his equations (3.5) and (3.6). This is a linearization of the lower boun- 
dary onto y = 0 ( z  = 0 in Townsend’s notation) and effectively involves expanding 
in a Taylor series about a singular point in the logarithmic profile. The term h/Kz 
(Townsend’s notation) in his equation (3.6) appears to invalidate the linearization 
procedure as z --f 0 but a more detailed analysis would be necessary to resolve the 
discrepancy properly. 

5. Perturbation force on the lower boundary 
As mentioned in fj 1, the change in total force on the lower boundary is of some 

interest. This force is composed of the change in stresses on the boundary which extend 
upstream and downstream of the obstacle, and also the pressure force which acts 
locally on the hump. The normal Reynolds stresses are somewhat arbitrarily counted 
in the first category here. 

The total force is given by 
F, = J” (rij -p8ij) ni dl (5.1) 

where r t j  is the stress tensor, p is the pressure, nj  is the unit normal to the surface, 
and the integration is calculated along the surface. We first calculate the drag contri- 
bution from the Reynolds-stress perturbaticns. The leading contribution can be shown 
to be 

Now 

from (3.1 I ) ,  and taking the expansion to second order, we find 

T$i)(x,  0) = 2U2-f‘2+ uq+ 2(Al1-A2,)f’u~.  

Using the expressions for U, and U,, i.e. (2.17), (2.18),  

m 

(2u,(x, 0) + 2ff”+f’2+ u; - 2A,,f’U,) ax 
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m 

= [ (2u2(x, 0 )  + u; -f’2) ax 
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J - W  

since f’ U, dx = 0 where U, is the potential flow solution. For potential flow /Im 
m 

uqax = / p a x ,  
- m  

therefore the only contribution comes from u,. However, it  is easy to show that 

U,(X, 0 )  ax = 0, rm 
thus FB = 0, and there is no contribution from the Reynolds stresses a t  this order. 

The calculation of the pressure force is more difficult. We note that up to O(& 
there are no terms influencing the pressure perturbation which involve the Reynolds 
stresses. The Reynolds stresses first appear in the outer-flow equations a t  O(&) whilst 
the displacement vertical velocity which provides the coupling between the outer 
layer and the sublayer first arises from equation (2.20), and is also O(&. All higher 
order vertical velocities a t  the outer edge of the Reynolds-stress sublayer vary like 
Y or In Y and simply match with the inviscid flow in the outer layer with undisturbed 
profile l+euBL(y ) .  Since this flow, although rotational, is still inviscid there is no 
resultant force on the lower boundary. We have 

therefore using (2.20), the only O(e4) contribution as Y 3 co comes from the stress 
gradient term, and if we denote this displacement contribution by V,, then 

= zu1+ (A11-A,z) f ’+2(1-Y)  ( A l l + 4 2 ) f ’  (5.3) 
using (3.10) and (3.11). 

We emphasize that there are other terms in the lower boundary condition for the 
O(&) perturbation in the outer flow, but this is the only one which produces a force, 
and we can consider V,, is isolation since the equations are linear. 

The O ( d )  equations for the outer flow are 

where 4) is the O(&) Reynolds-stress perturbation in the outer flow, and N,, N ,  repre- 
sent the nonlinear interaction terms from the lower-order perturbation velocities. 
The lower boundary condition on (5.4) is 

v5 = V3,+Vilinv on y = 0 (5.5) 

where fin” represents the vertical velocity contribution from the inviscid flow solution. 
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We define u5 = Uinv + ~ 5 d ,  similarly €or v5,p5 where 

Then 

and 

(5.7) 

Now since the problem (5 .6 )  contains just the elements of the inviscid problem, 
there will be no force contribution from this; hence we only need to solve the problem 
(5.7). 

Now the Reynolds-stress perturbations 54:) are easily calculated from the rapid 
distortion limit of the second-order closure equations as 

where 

Substituting (5.8) into (5.7),  we obtain 

Defining the Fourier transform E(w,  y) = u(x,  y) e-iwx dx, we obtain 1:- 
6,  = I w I f ( w )  e-lwlv, 

therefore 
a2  

aY 
-2@5d-w2@5d = -2(1-y)(All+A22)W2 I@lfe- 'w'y .  (5.10) 

Solving (5.10) with the lower boundary condition of (5.7), it  can be shown that 

p,nf'dx = f'2dx. 
-a- - m  

(5.11) 
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However, this is not quite the pressure force on the boundary, since P 5 d  is the pressure 
at the outer edge of the Reynolds-stress sublayer. We have to calculate the O ( E ~ )  
pressure change across the inner layer. Now 

(5.12) 

where I(, is a complicated set of inertial terms. It is quite straightforward to calculate 
N, and to show that none of the terms produces an O( 1) change in P5 across the layer, 
but the algebra is rather tedious and is therefore omitted. The result we require from 
(5 .12 )  is that  

p5d(x, 0) = p 5 d ( X ,  0) + 7&)(x, O )  - T&)(z, O )  

where P5d is the surface pressure responsible for the net force. 
Thus 

P5d = $)5d(x ,o )+  ( 2 - c )  u l + ( 2 + b ) f '  
and therefore 

P5df 'dx  =Iw - w  P 5 d f ' d % + ( 2 + b ) I w  - -m f " d X  

m 

= 4 1  f'2dx. 
- w  

Hence the total pressure force, and also the total perturbation force on the boundary, 
is 

m 
F = 4a3U;B [ f f a d x .  (5 .13 )  

Note that the force due to the undisturbed boundary layer on a section of length 6 is 
F, = s2U%B, and since the slope of the obstacle is O(E) ) ,  the perturbation force is 
O[(slope)2 x Fo]. Thus, although the perturbation pressures are very much larger, 
most of the pressure field produces no net force. It should be noted that the force in 
(5 .13 )  does not depend on any empirical constants in the turbulence closure. It is 
also of interest that  the force is sufficiently small for the pressure variation across the 
inner layer to be important. 

The force result (5 .13 )  does not really conflict with the result of Counihan et al. 
(1974)  that there is zero net-force perturbation on the boundary. Their result stems 
from a momentum integral calculation over a control volume whose size is of too 
large a magnitude to obtain the result ( 5 . 1 3 ) .  The present result is of the same asymp- 
totic magnitude as Townsend's (1972)  calculation of the pressure force, although 
there is some discrepancy in the numerical value. (5.13) implies that the average 
perturbation stress on a wavy surface would be 2a2u2,, where a is the maximum wave 
step. Although Townsend considers a wavelength L much less than 6, we shall show 
in the next section that the modifications to the asymptotic theory are trivial. In  this 
case, E can be defined as K/ln (L /yo ) ;  Townsend computes the stress perturbation for 
a between 0.05 and 0-033 and obtains results between 4a2u2, and 5.5a2u2,. However, 
in view of the serious discrepancy between Townsend's stress predictions and the 
current work, we would not expect quantitative agreement between the forces. We 
shall return to the question of the force on the obstacle in $ 7  when the effects of 
different closure assumptions are examined. 
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6. Discussion 
The analysis we have presented is not strictly limited to topography with a hori- 

zontal length scale of order S; shorter humps are easily accommodated. If we consider 
an obstacle of length O(snS), with n 2 0, we define an outer layer of thickness snS and 
a Reynolds-stress sublayer of thickness @+I&. The undisturbed profiles in the two 
layers will be 

and 

U n E  - = i+-1ns+sugL(y) 
UO K 

U _ -  - i+(n+l)Elna+EUBL(Y) 
UO K 

respectively, where uBL(y) N lng/K and UBL( Y )  N In Y / K  as y, Y --f 0. Since the wall 
layer is transcendentally thin, these algebraic changes in outer-layer magnitudes have 
no effect on the lower boundary conditions. Thus, the equations will be identical 
apart from the coefficient of the E In s perturbation, and the generation of logarithmic 
terms in the outer-layer expansion. The factor nlns/K can be absorbed into the 
definition of the free-stream velocity, which then leaves the equations unchanged 
but uses the boundary-layer velocity a t  height O(&) as the outer velocity scale. 
This wide range of applicability could have been anticipated from the observation in 
$ 4  that the form of the solution is independent of the length scale. Clearly in any 
actual case with a finite value of E there will be some definite lower limit on the size 
of the hump. 

The situation is more complicated with longer humps, since the outer layer becomes 
deeper than the boundary layer, and the boundary-layer scale must be retained as a 
middle layer for the higher-order perturbations. When the hump length is O(e-lS) or 
greater, then the Reynolds-stress sublayer merges into the main boundary layer and 
the equations are different since there is no rapid distortion region for the Reynolds 
stresses. On this length scale, the hump is much higher than the boundary layer, which 
is a thin region on the surface. For Iength scales much longer than (s-~C?, the boundary 
layer is in local equilibrium with the potential flow to first order everywhere. We shall 
not explore the structure of these long humps in detail, because the scale already 
considered contains most of the essential features of the dynamics. In all cases, it  
seems that the slopes must be O( 1 )  in order to provoke separation. 

In  view of the similarity of the theoretical work of Jackson & Hunt (1975), its 
relationship to the present work will be examined. Jackson & Hunt consider only 
two layers; an outer layer where the flow is inviscid as in the present work, and .an 
inner layer which bears some resemblance to our Reynolds-stress sublayer. There is 
some difficulty with the expansions, since they treat In (Z/yo) and In (L/yo) as different 
large parameters in some senses, where 1 and L are the scales of the inner and outer 
layers respectively. However these quantities are both O(s-1) in the notation of this 
paper, and they are in fact required to be the same in order for t,heir velocity pertur- 
bations to match. Given that In (Z/yo) = O(s-l), then Z/L = O(s)  in Jackson & Hunt's 
theory, precisely as in the present work. However, a mixing length closure is assumed 
for their inner layer, which has been shown to be inadequate in $ 3 above. The final 
result of Jackson & Hunt is that the inner-layer velocity perturbation is the potential 
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flow solution a t  the surface plus a contribution from the Reynolds stresses in the form 
of a Bessel function. But the Bessel function contribution is relatively O( 1/1n (,?/yo)) 
which is of the same order as other neglected terms in the equation, hence the approxi- 
mation is not strictly rational. However, it is worth examining their solution in the 
light of the present asymptotic theory. 

One parameter of practical interest is the relative speed-up As = Au(x, y + h(x))/u,(y) 
where Au(x,  y + h )  is the velocity perturbation a t  a point distance y above the surface 
h(x)  and uo(y) is the upstream profile. If the height of the hill is small enough for the 
nonlinear term U, in (2.12) to be smaller than the linear term U,, i.e. I djfl < elns  so 
that the obstacle is smaller than O(&), then the speed-up is easily seen to be 
As = U,( 1 - 2e In C / K )  in the Reynolds stress sublayer, using (2.19). This is in agreement 
with Jackson & Hunt’s equation (3.22). By continuing the expansion for the surface 
stress (2.25), it can be shown that As is unchanged in the wall layer, as is Jackson and 
Hunt’s solution. Thus, although Jackson and Hunt’s equations near the surface are 
not justified, their solution for the velocity perturbation is asymptotically correct 
throughout layer. This is perhaps reassuring in view of the reported successes of the 
theory in comparison with numerical results, Deaves (1975), and atmospheric obser- 
vations, Mason & Sykes (1979b). In  fact, Jackson & Hunt’s predictionof As is perhaps 
usefully viewed as a uniformly valid combination of the wall layer and the R,eynolds 
stress sublayer solutions since any practical application would necessitate joining the 
various asymptotic layers in some fashion. 

The work of Knight (1977) shows a degree of overlap with the present theory; the 
thickness of the inner layer is the same, and the leading-order velocity perturbation 
is also the same. Knight employs a two-equation turbulence model of Saffman (1970), 
but still uses an effective viscosity to obtain the Reynolds stresses. His closure produces 
significantly different results as discussed in the next section but unfortunately there 
are insufficient details in his paper to make further comments. 

7. Effects of different closures 
It is of interest to note which features of the solution depend on the closure assump- 

tions employed. We shall show that the stresses in the outer layer, and hence the 
pressure force on the surface, are very sensitive to the closure. 

The theories of Jackson & Hunt (1973) and also of Knight (1977) show that the 
inner layer emerges quite naturally from various closure assumptions, with stresses 
of magnitude O(C*U$) if we consider topography of slope O(ef) .  The simplest closure 
assumption is probably the mixing length model as used by Jackson & Hunt. This 
gives the stress on the product of the square of a mixing length and the square of a 
velocity gradient. Thus, if this closure was applied in the outer flow, where the mixing 
length is O(6) and the velocity gradient is O(e&Uo/8) we obtain a stress of O ( s U i ) .  The 
closures of Knight (1977) and Taylor (1977) employ transport equations for turbulence 
energy, but still use an effective viscosity to relate velocity gradients to the Reynolds 
stresses. It can be shown that the effective viscosity maintains its undisturbed magni- 
tude of O(u,S) in the outer flow, hence the stresses are O(efu,U,) = O ( @ U ~ ) .  These 
magnitudes are to be compared with the second-order closure and rapid-distortion 
results, which show that the perturbation stresses are O(e8Ui).  It should be noted 
Ghat the perturbation stresses from the other models are actually much larger than 



668 R. I .  Sykes 

Pressure force from Pressure force Ratio of Taylor’s 
Taylor ( 1  97 7) from (5.13) force to analytic 

Short hill prediction 

a = IOOOy, 
b = 6000g0 

7.19 x 103 1.0 x 103 ‘7.2 

Medium hill 
a = 4000y0 2.92 x 104 4.0 x 104 7.3 
b = 20000y, 

Long hill 
a = lOOOOy, 7.13 x 104 1.0 x 104 7.1 
b = 50000y0 

TABLE 1. Comparison between forces on Gaussian hills h = a exp( - ( z /b ) s )  
from Taylor (1977) and prediction of (5.13). 

the undisturbed stress. It is clear from this order-of-magnitude analysis that different 
closures will give completely different results for the stresses away from the surface, 
therefore detailed comparisons between various models are unlikely to be useful. 
The conclusion is that closures which do not allow for advection effects on the Reynolds 
stresses, but give a local relation between stress and velocity gradient, will give 
spuriously large Reynolds stresses in the outer flow. 

These spurious Reynolds stresses are manifested in the pressure force on the lower 
boundary. As discussed in 5 5, the perturbation pressure force arises a t  the order of 
the Reynolds stresses in the outer flow, since there is no interaction with the inner 
flow as in the laminar case. At lower orders we simply solve the inviscid equations of 
motion for flow over the topography, which gives no pressure force. Thus our results 
give a force of O(e3UgB) but the mixing length model gives O(dU;B)  and the turbulent 
energy model gives O(e2U;8).  This is consistent with Knight’s (1977) result that the 
phase of the pressure perturbation is O(a) compared to the O(s2) prediction of the 
second-order closure theory. 

Table 1 gives the pressure force results for three hills of different length from Taylor 
(1 977). These are the form drags for the planetary boundary layer model with a, = 0” 
from Taylor’s table 1.  Table 1 also gives the force on the hills calculated from (5.13), 
and the ratio of the two forces. We have shown that we would expect Taylor’s result 
to be O(s-l) larger than the current prediction, and although 6-l = 30 in this case, 
the ratios of about 7 are not inconsistent with this asymptotic result. 

Townsend (1972) obtains a force of the same magnitude as the present work; this 
again results from his closure in the outer region which gives Reynolds stresses of the 
same order as the second-order closure in an asymptotic sense. The numerical value 
of the force depends on the details of the closure, but the important point is that the 
order of magnitude of the force is affected by the level of sophistication of the closure 
and that some form of Reynolds stress transport equations are required to obtain the 
correct asymptotic magnitude. 
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8. Summary and conclusions 
We have presented a rational asymptotic theory of turbulent boundary-layer flow 

over a shallow hump, valid in the limit 6 + 0 where e is the ratio of the friction velocity 
to the free-stream speed. The flow structure consists of three layers; an outer layer 
on the scale of the boundary layer which is the same as the length of the obstacle; a 
Reynolds-stress sublayer which is a thin layer deformed along the surface of the 
obstacle; and a very thin wall layer adjacent to the surface. The structure is far less 
interactive than the laminar triple-deck, because of the very small velocity gradients 
in the outer part of a turbulent boundary layer. The leading-order velocity perturba- 
tions are simply the linearized potential flow solutions. The application of a second- 
order closure scheme to model the turbulent Reynolds stresses provides a description 
of the turbulence quantities, and allows a match between the equilibrium stresses 
near the surface and the rapidly distorted stresses in the outer flow. One feature worthy 
of note is the very large gradients in Reynolds stresses predicted near the surface, 
which implies that any numerical model of such flows must resolve variations on the 
scale of the surface roughness length or the viscous sublayer in the smooth-wall 
case. 

The rational expansion schemes also permits the calculation of the net force pertur- 
bation on the obstacle. This drag is of the order of the force produced by the undis- 
turbed flow on a section on a section of the surface of the same length as the obstacle 
multiplied by the square of the slope of the hump. The large, leading order pressure 
perturbations are governed by inviscid equations and produce no drag; this is in 
accord with the observed result that small surface variations do not produce large 
changes in net drag. 

Examination of the consequences of various levels of turbulence closure has demon- 
strated that the Reynolds stresses in the outer layer, and also the pressure force on 
the hump, can take asymptotically different orders of magnitude. It has been shown 
that the correct magnitude is only obtained through a Reynolds-stress transport 
equation which allows some form of ‘relaxation ’ of the Reynolds stresses, equivalent 
to a ‘rapid-distortion’ effect. Closures which relate the Reynolds stress to tlhe local 
velocity gradient will result in spuriously large pressure forces. 

It is hoped that this derivation of a rational asymptotic theory has clarified the 
dynamics of the flow, in particular the role of the Reynolds stresses. It should also be 
possible to apply this type of analysis to further problems involving turbulent boundary 
layer flow over obstacles, e.g. wind generation of water waves, or stably stratified flow. 
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